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For oscillating time series, the prediction is often focused on the turning points. In order to predict the
turning point magnitudes and times it is proposed to form the state space reconstruction only from the turning
points and modify the local �nearest-neighbor� model accordingly. The model on turning points gives optimal
predictions at a lower dimensional state space than the optimal local model applied directly on the oscillating
time series and is thus computationally more efficient. Simulations on different oscillating nonlinear systems
showed that it gives better predictions of turning points and this is confirmed also for the time series of annual
sunspots and total stress in a plastic deformation experiment.
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The prediction of oscillating time series that do not ex-
hibit apparent periodicity has been a long lasting challenge
and the focus of three time series prediction competitions
�1–3�. Evidence from the winning models of the competi-
tions and other prediction studies raises two main points: �a�
multistep ahead prediction requires a long time window and
consequently a high embedding dimension M and �b� local
prediction models, also called nearest-neighbor models, are
computationally efficient and compete other more compli-
cated black-box models, such as neural networks. Notably,
they were among the winning entries of the two first compe-
titions. In this work these two points are incorporated in the
prediction of the turning points of the oscillating time series.
The prediction of successive samples is associated with in-
traoscillation correlations whereas the prediction of turning
points regards interoscillation correlations, which are more
relevant to the underlying oscillating dynamics �4�. Turning
point prediction is of great practical interest in many appli-
cations, such as finance �5,6�. It will be shown below that the
prediction of turning points with local models can be im-
proved using state space reconstruction solely on the turning
points at a lower embedding dimension m.

For an oscillating time series of length N �x�t��t=1
N , where

the observation time is t�s and �s is the sampling time, a
sample x�t� is a turning point if it is the minimum or maxi-
mum of all samples in the time window �t− p , t+ p�, where
the parameter p determines the tolerance for temporal close-
ness of successive turning points. A small p may assign turn-
ing points for glitches in the case of noisy oscillations,
whereas a large p may not detect peaks and troughs of short
lasted oscillations. For noisy time series, a small p can still
be used in conjunction with filtering, and then the turning
points are located on the smoothed time series. Note that the
turning point magnitudes are then taken from the original
time series. Denoting the turning point yi=x�ti� at time point
ti, we derive the time series �yi�i=1

n and �ti�i=1
n of magnitudes

and times of the alternating turning points, respectively. Thus
two successive samples of �yi�i=1

n regard an oscillation of
�x�t��t=1

N . One may also consider three turning points to in-

clude both the start and end of the oscillation.
In the reconstruction of the M-dimensional pseudostate

space from �x�t��t=1
N , the reconstructed points have the gen-

eral form x�t�= �x�t� ,x�t−�1� , . . . ,x�t−�M−1���. The standard
delay embedding suggests the use of a properly selected
fixed delay �, so that the time window length is �w=�M−1
= �M −1��. For multistep prediction, �w should be large
enough to account for the mean orbital period of the under-
lying to time series trajectory and it should cover the period
of an oscillation or a pattern of oscillations �7�. The choice of
large delays or a fixed large � instead of a large M would not
be appropriate as in this case large pieces of information
from the oscillation, most importantly the peak and trough,
may not be represented in x�t�. The main idea in the pro-
posed approach is to let � j, j=1, . . . ,M −1, and �w vary with
the target time t, so that the peaks and troughs are selected as
components of x�t�, resulting in a smaller embedding dimen-
sion m than M. Moreover, the reconstructed trajectory
�x�t��t=1+�w

N is subsampled at times �ti�i=1
n . This is actually the

state space reconstruction of �yi�i=1
n in an m-dimensional state

space. The reconstructed point is

yi = �yi,yi−1, . . . ,yi−m+1�� = �x�ti�,x�ti−1�, . . . ,x�ti−m+1���
�1�

for i=m , . . . ,n, where the implied lags with regard to x�t� are
� j = ti− ti−j, j=1, . . . ,m−1.

The compression of �x�t��t=1
N to �yi�i=1

n simplifies the em-
bedding because m�M and no lag parameter is involved, at
the cost of stripping off the information in the samples be-
tween the turning points. This compression is analogue to the
reduction of a flow to its Poincaré map. Note that formally
Poincare maps require that a state space reconstruction is
made first, whereas in this approach the state space recon-
struction is made on the turning points. For low-dimensional
chaotic systems with sheetlike structure, it has been shown
that the local maxima, i.e., every second turning point, repro-
duce the dynamics of the respective Poincaré map that has
fractal dimension one less than that of the flow, e.g., the time
series of the third variable of the Lorenz system �8� �see also
Ref. �9� for the so-called peak-to-peak dynamics�. Similarly,
we expect that the time series of magnitudes of turning*URL: http://users.auth.gr/dkugiu; dkugiu@gen.auth.gr
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points preserve the original dynamics of the flow and form
an attractor with a fractal dimension smaller than that for the
flow and somehow larger than that for the corresponding
Poincaré map, as estimated through the local maxima. This is
demonstrated in Fig. 1 for the Mackey Glass delay differen-
tial equation with delay �=30 that regards a correlation di-
mension ��3.0 �10�. The delay differential equation is
solved with a discretization step of 0.1 s. The local slope of
the correlation integral estimated on a densely sampled os-
cillating time series, i.e., �s=5 s, N=200 000 and roughly
3200 oscillations, does not maintain sufficient scaling and
the same holds for the respective time series of turning
points �see Figs. 1�a� and 1�c��. The insufficient scaling per-
sists for the oscillating time series even for a larger sampling
time ��s=30 s� giving 6 times more oscillations for the same
N �see Fig. 1�b��, whereas scaling at the level ��2.2 is
formed from the turning point time series of the same N, as
shown in Fig. 1�d�.

The amount of loss of information in the compression of
�x�t��t=1

N to �yi�i=1
n and �ti�i=1

n depends on the curvature of the
upward and downward pattern of the oscillations. Actually,
in the case of linear upward and downward trends there is no
loss of information, as each sample x�ti−k� between two
turning points x�ti−1� and x�ti�, where k� �0,1 , . . . , ti− ti−1�,
can be expressed in terms of the magnitude and time of the
two turning points as

x�ti − k� = x�ti� − k
x�ti� − x�ti−1�

ti − ti−1
= yi − k

yi − yi−1

ti − ti−1
.

The delay embedding on �yi�i=1
n does not account for the

times �ti�i=1
n of the turning points and information from the

samples is lost. However, for prediction purposes, it is op-
erationally tractable to form the reconstructed state space
from the magnitudes �yi�i=1

n in order to find neighboring
points for the local prediction scheme and then call in the
times �ti�i=1

n to estimate the time position that corresponds to
the predicted magnitude of the turning point, as shown be-
low. Our attempts on simulated chaotic systems with dy-
namic local regression models making use of magnitudes
and times to reconstruct the state space showed no improve-
ment in the prediction of turning points.

The prediction model of choice in this work is the local
average mapping �LAM�, but other local models can be de-
veloped in a similar way. For a fixed number of neighbors K
and given the turning points up to time ti, the one-step ahead
prediction of the turning point magnitude yi+1 is estimated by
the average of the one-step ahead mappings of the K nearest
neighboring points yi�k�, k=1, . . . ,K, to the target point yi

ŷi+1 =
1

K
�
k=1

K

yi�k�+1. �2�
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FIG. 1. Local slope vs base 10 logarithm of distance r for embedding dimensions 1,…,10, as indicated in the panels, and for oscillating
time series in �a� and �b� and turning point time series in �c� and �d� from the Mackey Glass system with �=30. �a� �s=5 s, N=200 000,
�=35; �b� �s=30 s, N=200 000, �=6; �c� �s=5 s, N=200 000, n=6380; �d� �s=5 s, N=6 284 867, n=200000. The lag � is selected from the
minimum of mutual information.
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The prediction of the time of the turning point yi+1, ti+1, is
estimated from the average of the corresponding time incre-
ments of the K neighboring points

t̂i+1 = ti +
1

K
�
k=1

K

�ti�k�+1 − ti�k�� . �3�

For the iterative prediction of the turning point magnitude
at a lead time T, the target point at time ti+1 is updated as
yi+1= �ŷi+1 ,yi , . . . ,yi−m+2��, and the one-step prediction is
done as in Eq. �2� but for the new set of neighboring points
of yi+1. This step is repeated until the prediction of yi+T is
reached. The direct prediction scheme is simpler and faster
as it predicts yi+T directly by the average of the T-step ahead
mappings of the neighboring points of yi. The iterative and
direct multi-step ahead prediction of the times of the turning
points is done similarly using Eq. �3�. We refer to this pre-
diction model as the “extreme magnitude local average map”
�EMLAM� to stress that the neighboring points in the local
average map are formed only on the basis of the magnitudes
of the local extremes �turning points�.

We investigate whether we can predict the forthcoming
local extremes of an oscillating time series better than the
standard multistep prediction with LAM. In Fig. 2 an ex-
ample is shown for the multistep prediction of turning points
of the fourth variable of the Rössler hyperchaos system �11�.
The predicted turning points with LAM, are identified from
the multistep sample predictions in the same way as the turn-
ing points are determined on the oscillating time series. This
time series has a rather linear upward and downward trend,
so that the loss of information using only the turning point
time series is expected to be small.

The improved prediction of EMLAM compared to LAM
for this system is confirmed by simulations on 1000 realiza-
tions using the prediction measure of normalized root mean
square error �NRMSE� on the last quarter of each time series.
As shown in Fig. 3, the prediction with EMLAM is better
both for the magnitude and time of the next turning point and

this holds for noise-free and noisy data. The difference is
smaller for the turning point magnitudes of the noisy data,
mainly because the LAM prediction errors are at the level of
the noise-free case, or even lower for intermediate time win-
dow lengths. It seems that for this system, the addition of
observational noise does not affect significantly the direct
multistep ahead predictions. This is not true for the iterative
LAM predictions and the difference of LAM and EMLAM
prediction is then larger both for the noise-free and the noise
case. The difference in prediction in favor of EMLAM per-
sists for different data sizes N, number of nearest neighbors
K, and prediction steps T, as shown in Table I. Table I shows
the least NRMSE and the corresponding embedding dimen-
sion for the range of the other factors. These are K
=1,5 ,10; T=1,2 ,3; N=4096,16 384, and are shown in the
rows, whereas magnitude and time are in the columns.

EMLAM provides computationally efficient predictions at
a small embedding dimension up to m=4, whereas LAM
fails, at cases dramatically, to reach the level of prediction of
EMLAM for any of the tested embedding dimensions. The
direct prediction scheme shows less dramatic differences in
the performance of the two prediction models. With the ad-
dition of observational noise the results are qualitatively the

TABLE I. Summary results of the average NRMSE as for the
noise-free case in Fig. 3 but for varying N, T, and K. For each
combination of N, T, and K, the M of best prediction with LAM and
m of best prediction with EMLAM together with the respective
NRMSE are given, where M =3, . . . ,10 ��=10� and m=2, . . . ,6.

T K

Magnitudes Times

M LAM m EMLAM M LAM m EMLAM

N=4096

1 1 10 1.144 3 0.873 9 1.083 2 0.556

1 5 10 1.318 4 0.816 10 1.247 2 0.562

1 10 10 1.479 4 0.885 10 1.336 2 0.645

2 1 9 1.137 3 1.013 8 1.569 2 1.097

2 5 10 1.259 4 0.916 7 1.710 2 0.976

2 10 10 1.396 4 0.935 8 1.769 2 0.998

3 1 10 1.352 3 1.153 8 2.245 2 1.438

3 5 10 1.673 4 1.028 7 2.450 5 1.224

3 10 10 1.940 2 1.005 8 2.577 4 1.213

N=16384

1 1 10 0.813 3 0.508 9 0.911 2 0.369

1 5 10 0.928 2 0.543 10 1.179 2 0.374

1 10 10 1.150 4 0.582 10 1.331 2 0.426

2 1 9 0.837 3 0.672 8 1.290 3 0.801

2 5 10 0.956 3 0.678 9 1.649 3 0.783

2 10 10 1.157 4 0.681 10 1.737 3 0.808

3 1 9 1.013 3 0.794 8 1.929 3 1.136

3 5 4 1.411 4 0.787 4 2.460 3 1.085

3 10 10 1.547 4 0.767 3 2.476 5 1.084
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FIG. 2. �Color online� Out-of-sample direct predictions of turn-
ing points for the fourth variable of the Rössler hyperchaos system
��s=0.1 s� with LAM �M =9, �=10, K=5� and EMLAM �m=3, K
=5� as given in the legend. The original samples are given with
cyan �gray� line. The vertical line is at t=15 000 of the current
turning point set to 0 for clarity. For LAM t is advanced by p=3 to
account for the time the target turning point is detected.
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same and the differences get smaller for the direct prediction
scheme �see also Fig. 3� and larger for the iterative predic-
tion scheme. These results are based on simulations with 5
and 10 % observational noise, not shown here. For the de-
tection of the noisy turning points, zero-phase filtering was
used with an order adjusted to the amount of noise in the
data, in order to smooth out close local maxima and minima
that apparently do not correspond to real oscillations.

The same simulations have been applied to other oscillat-
ing time series of varying complexity that are not character-
ized by linear upward and downward trend, namely, the first
variable of the Rössler hyperchaos system, the first and third
variable of the Rössler system �12�, and the Mackey-Glass
delay differential equation for delay parameter 17, 30, and
100 �10�. The overall results show that EMLAM gives as
good, and at cases better, predictions of turning points as the
ones obtained by LAM.

The simulations revealed some important features of turn-
ing point prediction in favor of EMLAM. In all cases, the
best predictions with EMLAM were obtained with a small m
at the level of the fractal dimension of the underlying system,
e.g., for the Mackey-Glass system with delay 100 that has a
fractal dimension about 7, best results were obtained for m at
the range from 7 to 10. For LAM, best results could be
reached only for large �w implying very large M. Another

interesting feature is that for LAM the direct scheme predicts
the turning points better than the iterative scheme, whereas
for EMLAM both schemes give similar predictions. It is also
noted that in the noise-free case, a smaller sampling time �s
improves the accuracy in the detection of the turning points
and consequently enhances the prediction with EMLAM,
whereas it perplexes the selection of the embedding param-
eters M and � for LAM.

We apply the same prediction setup to the celebrated time
series of annual sunspot numbers from year 1700 to 2006.
Sunspot numbers exhibit a rather regular oscillation of about
11 years long with stable trough but varying peak that has
given rise to debatable prediction results suggesting stochas-
tic, noisy periodic, and chaotic behavior, obtained with time
series models and other models, such as models of input-
output systems �1,13–16�. As shown in Fig. 4�a�, the out-of-
sample predictions of LAM give rather periodic oscillations,
failing to approximate the true peaks, whereas EMLAM
matches better the true peaks both in magnitude and time.
The difference in LAM and EMLAM turning point predic-
tion is rather consistent over different embedding schemes,
as shown in Fig. 4�b� regarding the most favorable scenario
for LAM. Other state space reconstructions with ��1 as
well as the direct scheme gave worse LAM predictions. The
summary results in Table II for different K and T, show the
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FIG. 3. �Color online� The average NRMSE of the prediction of next turning point with LAM �direct scheme� and EMLAM �K=5� from
1000 time series of length 8192 from the fourth variable of the Rössler hyperchaos system. The error bars denote the standard deviation of
NRMSE. The �w in the abscissa is defined as �w= �M −1�10 for LAM and �w= �m−1�33 for EMLAM, as the mean oscillation period is
estimated from the power spectrum peak to be 66. In �a� and �b� the data are noise-free and the prediction is for the magnitude and time of
the turning point, respectively. In �c� and �d� the same predictions are for data corrupted with 10% observational white normal noise. In order
to detect the turning points a zero-phase filtering of order 13 is applied to the noisy data.
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superiority of EMLAM over LAM, where again best
EMLAM predictions are obtained for small m.

Finally, we compare LAM and EMLAM on the time se-
ries of total stress from an experiment of plastic deformation
that exhibits the Portevin–Le Châtelier �PLC� effect. Poly-
crystal Cu-15% Al is tensile strained at �̇=6.67�10−6 s−1

and T=125 °C, and the total stress is sampled at �s=0.2 s;

further details can be found in Refs. �4,17�. The increasing
trend of total stress was removed and the predictions were
done on the last quarters of overlapping segments of duration
1200 s and sliding step 300 s. For a range of model specific
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FIG. 5. �Color online� �a� Direct prediction of the magnitudes of
turning points of total stress in consecutive overlapping segments at
times given in the abscissa. The detection of turning points is done
with window of p=1 and zero-phase filtering of order 13, and the
model parameters are K=10, �=5, M =10, and m=5. The predic-
tions are for one and two time step ahead for LAM and EMLAM, as
given in the legend. The vertical yellow �light gray� lines denote the
separation of PLC band types denoted at the bottom. �b� The same
as in �a� but for the times of the turning points.
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FIG. 4. �Color online� Iterative prediction of turning points of
sunspot numbers with LAM and EMLAM. �a� Out-of-sample itera-
tive prediction for the last 70 annual sunspot numbers with LAM
�M =11, �=1, K=5� and EMLAM �m=3, K=5� as given in the
legend. The original samples are given with cyan �gray� line. The
turning points were detected using p=1. The vertical line denotes
the target time. �b� NRMSE of iterative prediction of turning point
magnitudes at T=1,2 ,3 with LAM and EMLAM �K=5�, as given
in the legend, computed on the last quarter of the sunspot time
series, where �w=M −1 for LAM and �w= �m−1�5 for EMLAM to
account roughly for the 11 year cycle.

TABLE II. Summary results of NRMSE for direct prediction of sunspot turning points structured as in Table I, where M
=6,11, . . . ,46 ��=1� and m=2, . . . ,10.

T K

Magnitudes Times

M LAM m EMLAM M LAM m EMLAM

1 1 41 0.548 4 0.480 11 0.874 10 0.778

1 5 6 0.661 5 0.622 11 0.795 10 0.595

1 10 31 0.763 10 0.714 6 0.743 5 0.550

2 1 31 0.735 4 0.433 11 1.322 10 1.597

2 5 41 0.747 4 0.601 6 1.451 2 0.940

2 10 31 0.776 8 0.681 26 1.569 4 1.066

3 1 6 0.568 5 0.793 41 2.020 8 2.185

3 5 31 0.824 4 0.761 6 1.960 4 1.189

3 10 31 0.801 2 0.761 26 1.732 3 1.385
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parameter values EMLAM gave consistently better predic-
tions than LAM. In Fig. 5, the turning point magnitude and
time predictions with the direct scheme are shown for LAM
and EMLAM for arbitrary chosen model parameters.
EMLAM improves drastically the prediction of magnitudes
and times of the turning points for most of the epochs and
the difference is larger for the iterative prediction scheme
�not shown here�. LAM predictions are essentially at the
level of mean value prediction. To the contrary, EMLAM
attains much smaller NRMSE that varies in a way that al-
lows the identification, at some degree, of the transition of
PLC band types: from type A to type C and then back to type
A, as shown with the vertical lines in Fig. 5. The actual
transitions of PLC bands could only be identified by special
equipment following the local strains along the specimen
�for details see Ref. �17��. So, beyond improving the LAM
prediction, EMLAM prediction can possibly be used as a
discriminating measure for the PLC band types. This point
certainly bears further investigation.

In conclusion, this work suggests that the analysis of os-
cillating time series, in particular those exhibiting rather lin-
ear upward and downward trends, can be improved, and sim-
plified, by restricting the analysis to the turning points. It was
shown that the information in the time and magnitude of the
turning points can be adequate to explain the system dynam-
ics. Simulations on a number of chaotic flows and the two
real-world examples showed that a local average model
based only on the turning points can predict turning points
equally to, or better than, the standard local average model, a
result of paramount importance for many applications. There
are a number of issues to be addressed, such as implementa-
tion of other model types and inclusion of turning point time
in the model, but it seems that the focus on turning points
can give a new perspective in the analysis and prediction of
oscillating time series.

The author thanks Professor H. Neuhäuser for providing
the PLC data.
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